Влияние легирующих элементов на свойства стали и сплавов

Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Cr, Ni, Mo, Wo, V, А1, В, Ti и др.), а также Мn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.Легирование сталей и сплавов используют для улучшения их технологических свойств. Легированием можно повысить предел текучести, ударную вязкость, относительное сужение и прокаливаемость, а также существенно снизить скорость закалки, порог хладноломкости, деформируемость изделий и возможность образования трещин. В изделиях крупных сечений (диаметром свыше 15…20 мм) механические свойства легированных сталей значительно выше, чем механические свойства углеродистых сталей. По применимости для легирования можно выделить три группы элементов:
  • Mn,Si,Cr,B;
  • Ni,Mo;
  • V, Ti, Nb, W, Zr и др.
Применимость для легирования различных элементов определяется не столько физическими, сколько, в основном, экономическими соображениями.Легирующие элементы по механизму их воздействия на свойства сталей и сплавов можно разделить на три группы:
  • влияние на полиморфные (альфа-Fe -> гамма-Fe) превращения;
  • образование с углеродом карбидов (Сг,Fе)7С3(Сг,Ре)23С6Мо2С и др.;
  • образование интерметаллидов (интерметаллических соединений) с железом — 7Мо6Fe3Nb и др.
В следующей таблице показано влияние наиболее применяемых легирующих элементов на свойства стали.
Легирующий элемент Входит в твердый раствор с Fe и упрочняет его Увеличивает ударную вязкость Расширяет область аустенита Сужает область аустенита Увеличивает прокаливаемость Способствует раскислению Образует устойчивые карбиды Повышает сопротивление коррозии
Ni + + + + +
Cr + + + +
Mn
(более 1%)
+ + + + + + +
Si
(более 0,8%)
+ + + +
W +
Сu
(0,3 — 0,5%)
+ +
По характеру влияние на полиморфные превращения легирующие элементы можно разделить на две группы:
  • элементы (Cr, W, Mo, V, Si, Al и др.), достаточное содержание которых обеспечивает существование в сталях при всех температурах легированного феррита (ферритные ставы);
  • элементы (Ni, Mn и др.), стабилизирующие при достаточной концентрации легированный аустенит при всех температурах (аустенитные сплавы). Сплавы, только частично претерпевающие превращение гамма->альфа, называются, соответственно, полуаустенитными или полуферритными.
Легирование феррита сопровождается его упрочнением. Наиболее значительно влияют на его прочность марганец и хром. Причем чем мельче зерно феррита, тем выше его прочность.Многие легирующие элементы способствуют измельчению зерен феррита и перлита в стали, что значительно увеличивает вязкость стали. Однако все легирующие элементы, за исключением никеля, при содержании их в растворе выше определенного предела снижают ударную вязкость, трещиностойкость и повышают порог хладноломкости. Никель понижает порог хладноломкости.Легированный аустенит парамагнитен, обладает большим коэффициентом теплового расширения. Легирующие элементы, в том числе азот и углерод, растворимость которого в аустените при нормальной температуре достигает 1%, повышают его прочность при нормальной и высокой температурах, уменьшают предел текучести.Легированный аустенит является основной составляющей многих коррозионностойких, жаропрочных и немагнитных сплавов. Он легко наклепывается, то есть быстро и сильно упрочняется под действием холодной деформации.Легирующие элементы (исключение кобальт), повышая устойчивость аустенита, снижают критическую скорость закалки и увеличивают прокаливаемость. Для многих аустенитных сплавов критическая скорость закалки снижается до 20°С/с и ниже, что имеет большое практическое значение.Карбидообразующие элементы: Fe — Mn — Cr — Mo — W — Nb — V — Zr — Ti (за исключением марганца) препятствуют росту зерна аустенита при нагреве. Сталь, легированная этими элементами, при одинаковой температуре сохраняет более высокую дисперсность карбидных частиц, и соответственно большую прочность.Интерметаллиды образуются при высоком содержании легирующих элементов между этими элементами или с железом. Примером таких соединений могут служить Fe7Mo6Fe3Nb2 и др. Интерметаллиды, как правило, отличают повышенные твердость и хрупкость.